GENERAL DESCRIPTION

The BL8531H_ADC is a CMOS 12bit analog-to-digital converter (ADC). It converts the analog input signal into 12 bit binary digital codes at a maximum sampling rate of 10 MHz .
The device is a monolithic ADC with an on-chip, high-performance, sample-and-hold Amplifier (SHA) and current referenc. The structure allows both differential and single-ended input.
This 12bit ADC has also 3 channel MUX, so 3 channel inputs are acceptable.

TYPICAL APPLICATIONS

CCD Imaging (Copiers, Scanners, Cameras)
Medical Instruments
Digital Communication Systems

FEATURES

Resolution : 12bit
Maximum Conversion Rate : 10 MHz
Power Supply : 5V
Power Consumption : 100mW (typical)
Reference Voltage : $3.5 \mathrm{~V}, 1.5 \mathrm{~V}$ (dual reference)
Input Range : $0.5 \mathrm{~V} \sim 4.5 \mathrm{~V}\left(4.0 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}}\right)$
Differential Linearity Error : ± 0.7 LSB
Integral Linearity Error : $\pm 1.0 \mathrm{LSB}$
Signal to Noise \& Distortion Ratio : 65dB
Total Harmonic Distortion : 74dB

- 3 Channel Inputs

Digital Output : CMOS Level
Operating Temperature Range : $0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$

FUNCTIONAL BLOCK DIAGRAM

Ver 1.1 (Apr. 2002)
No responsibility is assumed by SEC for its use nor for any infringements of patents or other rights of third parties that may result from its use. The content of this datasheet is subject to change without any notice.

CORE PIN DESCRIPTION

NAME	I/O TYPE	I/O PAD	PIN DESCRIPTION
REFTOP	AO	poar10_bb	Reference Top Force (3.5V)
REFBOT	AO	poar10_bb	Reference Bottom Force (1.5V)
CML	AO	poar10_bb	Internal Bias
VDDA	AP	vdda	Analog Power (5V)
VBB	AG	vbba	Analog Sub Bias
VSSA	AG	vssa	Analog Ground
R_INP	AI	piar10_bb	$\begin{aligned} & \text { Analog Input }(\mathrm{RED})+ \\ & \text { (Input Range : } 1.5 \mathrm{~V} \sim 3.5 \mathrm{~V} \text {) } \end{aligned}$
R_INN	AI	piar10_bb	$\begin{aligned} & \text { Analog Input }(\mathrm{RED})- \\ & \text { (Input Range : } 1.5 \mathrm{~V} \sim 3.5 \mathrm{~V} \text {) } \end{aligned}$
G_INP	AI	piar10_b	$\begin{aligned} & \text { Analog Input }(\text { GREEN })+ \\ & \text { (Input Range : } 1.5 \mathrm{~V} \sim 3.5 \mathrm{~V} \text {) } \end{aligned}$
G_INN	AI	piar10_bb	Analog Input (GREEN) - (Input Range : $1.5 \mathrm{~V} \sim 3.5 \mathrm{~V}$)
B_INP	AI	piar10_bb	$\begin{aligned} & \text { Analog Input }(\mathrm{BLUE})+ \\ & \text { (Input Range }: 1.5 \mathrm{~V} \sim 3.5 \mathrm{~V} \text {) } \end{aligned}$
B_INN	AI	piar10_bb	Analog Input (BLUE) - (Input Range : $1.5 \mathrm{~V} \sim 3.5 \mathrm{~V}$)
REDB	DI	picc_bb	RED Channel Select (0:select)
GREENB	DI	picc_bb	GREEN Channel Select (0:select)
BLUEB	DI	picc_bb	BLUE Channel Select (0:select)
STBY	DI	picc_bb	$\begin{aligned} & \text { VDD=power saving (standby), } \\ & \text { GND=normal } \end{aligned}$
CKIN	DI	picc_bb	Sampling Clock Input
D[11:0]	DO	pot4_bb	Digital Output
VSSD	DG	vssd	Digital GND
VDDD	DP	vddd	Digital Power (5V)

I/O TYPE ABBR.

-AI : Analog Input
-DI : Digital Input
-AO : Analog Output
-DO : Analog Output
-AP : Analog Power
-AG : Analog Ground
-DP : Digital Power
-DG: Digital Ground
-AB : Analog Bidirection
-DB : Digital Bidirection

[MSB:LSB]
D[11:0]

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Supply Voltage	VDD	6.0	V
Analog Input Voltage	R_INP/R_INN G_INP/G_INN B_INP/B_INN	VSS to VDD	V
	CLK	VSS to VDD	V
	Tstg	-45 to 150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	Topr	0 to 70	${ }^{\circ} \mathrm{C}$

NOTES

1. Absolute maximum rating specifies the values beyond which the device may be damaged permanently. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect reliability. Each condition value is applied with the other values kept within the following operating conditions and function operation under any of these conditions is not implied.
2. All voltages are measured with respect to VSS unless otherwise specified.
3. 100 pF capacitor is discharged through a $1.5 \mathrm{k} \Omega$ resistor (Human body model)

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Typ	Max	Unit
Supply Voltage	VDDA1				
VDDA2					
Analog Input Voltage	R_INP/G_INP/B_INP R_INN/G_INN/B_INN	0.75	5.0	5.25	V
Operating Temperature	Toper	0	-	4.5	V

NOTES
It is strongly recommended that all the supply pins (VDDA, VDDD) be powered from the same source to avoid power latch-up.

DC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Typ	Max	Unit	Test Condition
Differential Nonlinearity	DNL	-	± 0.7	± 1	LSB	
Integral Nonlinearity	INL	-	± 1.0	-	LSB	REFTOP=3.5V REFBOT $=1.5 \mathrm{~V}$
Offset Voltage	OFF	-	10	-	mV	

(Converter Specifications : VDDA=VDDD $=5 \mathrm{~V}$, VSSA=VSSD $=0 \mathrm{~V}$,
Toper $=25^{\circ} \mathrm{C}$, REFTOP $=3.5 \mathrm{~V}$, REFBOT $=1.5 \mathrm{~V}$ unless otherwise specified)

AC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Typ	Max	Unit	Test Condition
Maximum Conversion Rate	fc	-	10		MHz	AINR=R_INP-R_INN AING=G_INP-G_INN AING=B_INP-B_INN
Dynamic Supply Current	IVDD	-	20	mA	fc=10MHz (without system load)	
 Distortion Ratio	SNDR	-	65	-	dB	AIN=1MHz, Differential Input
Total Harmonic Distortion	THD	-	74	-	dB	AIN=1MHz, Differential Input

(Conversion Specifications : VDDA=VDDD $=5 \mathrm{~V}, \mathrm{VSSA}=\mathrm{VSSD}=0 \mathrm{~V}$,
Toper $=25^{\circ} \mathrm{C}$, REFTOP $=3.5 \mathrm{~V}, \mathrm{REFBOT}=1.5 \mathrm{~V}$ unless otherwise specified)

I/O CHART

Index	R_INP Input (V)	R_INN Input (v)	Digital Output		
0	$0.500 \sim 0.501$	2.5	000000000000	RED Channel Input Full Scale=4V $1 \mathrm{LSB}=0.977 \mathrm{mV}$ REFTOP=3.5V REFBOT=1.5V	
1	$0.501 \sim 1.502$	2.5	000000000001		
2	$0.502 \sim 1.503$	2.5	000000000010		
- $\\|$	$\bigcirc{ }^{\circ}$		\bigcirc		
8197	$2.499 \sim 2.5000$	2.5	0111111111111		
8192	$2.500 \sim 2.501$	2.5	100000000000		
8193	$2.501 \sim 2.502$	2.5	100000000001		
- $\square^{\text {g }}$	${ }^{\circ} \mathrm{q}$		$\bigcirc{ }^{\text {q }}$		
16381	$4.497 \sim 4.498$	2.5	111111111101		
16382	$4.498 \sim 4.499$	2.5	111111111110		
16383	$4.499 \sim 4.500$	2.5	111111111111		

TIMING DIAGRAM

FUNCTIONAL DESCRIPTION

1. The BL8531H_ADC is a CMOS four step pipelined Analog-to-Digital Converter. It contains 4-bit flash A/D Converters, three 3bit flash A/D converters and three multiplying D/A Convertors. The N-bit flash ADC is composed of $2^{\mathrm{N}}-1$ latched comparators, and multiplying DAC is composed of $2 *\left(2^{\mathrm{N}}+1\right)$ capacitors and two fully-differential amplifiers.
2. The BL8531H_ADC operates as follows. During the first "L" cycle of external clock the analog input data is sampled, and the input is held from the rising edge of the external clock, which is fed to the first 4-bit flash ADC, and the first multiplying DAC. Multiplying DAC reconstructs a voltage corresponding to the first 4-bit ADC's output, and finally amplifies a residue voltage by 2^{4}. The second and third flash ADC, and MDAC are worked as same manner. Finally amplified residue voltage at the third multiplying DAC is fed to the last 3-bit flash ADC decides final 3-bit digital digital code.
3. BL8531H_ADC has the error correction scheme, which handles the output from mismatch in the first, second, third and fourth flash ADC.

MAIN BLOCK DESCRIPTION

1. SHA

SHA (Sample-and-Hold Amplifier) is the circuit that samples the analog input signal and hold that value until next sample-time. It is good as small as its different value between analog input signal and output signal. SHA amp gain is higher than 70 dB at 10 MHz conversion rate, its settling-time must be shorten than 38 ns with less than $1 / 2$ LSB error voltage at 12 bit resolution. This SHA is consist of fully differential op amp, switching tr. and sampling capacitor. The sampling clock is non-overlapping clock (Q1, Q2) and sampling capacitor value is about 4pF. SHA uses independent bias to protect interruption of any other circuit. SHA amp is designed that open-loop dc gain is higher than 70 dB , phase margin is higher than 60 degrees. Its input block is designed to be the rail-to-rail architecture using complementary different pair.

2. FLASH

The 4-bit flash converters compare analog signal (SAH output) with reference voltage, and that results transfer to MDAC and digital correction logic block. It is realized fully differential comparators of 15EA. Considering self-offset, dynamic feed through error, it should distinguish 40 mV at least. First, the comparators charge the reference voltage at the sampling capacitors before transferred SHA output.That operation is performed on the phase of Q 2 , and discharging on the phase of Q 1 . That is, the comparators compare relative different values dual input voltage with dual reference voltage. Its output during Q1 operation is stored at the pre-latch block by Q1P.

3. MDAC

MDAC is the most important block at this ADC and it decides the characteristics. MDAC is consist of two stage op amp, selection logic and capacitor array (c_array). c_array's compositions are the capacitors to charge the analog input and and the reference voltage, switches to control the path. Selection logic controls the c_array internal switches. If Q1 is high, selection's output are all low, the switches of tsw1 are off, the switches of tsw2 are all on. Therefore the capacitors of c_array can charge analog input values held at SHA.

CORE EVALUATION GUIDE

1. ADC function is evaluated by external check on the bidirectional pads connected to input nodes of HOST DSP back-end circuit.
2. If User want the specific analog input range, the reference voltages may be forced.

(ADC Function Test \&
externally forced Digital Input)

USER GUIDE

1. Input Channel Select

- REDB, GREENB, BLUEB
- only 1 channel shoud be selected
- for example for RED channel select : REDB=0, GREENB=1, BLUEB=1

2. Input Range (for example : RED channel)

- If you want to using the single-ended input and RED channel is selected, you should use he input range as below.

R_INP : $0.5 \mathrm{~V} \sim 4.5 \mathrm{~V}$
R_INN : 2.5 V

- If you want to using the differential input, you should use the input range as below.

R_INP : $1.5 \mathrm{~V} \sim 3.5 \mathrm{~V}$,
R_INN : $1.5 \mathrm{~V} \sim 3.5 \mathrm{~V}$.
AINR : R_INP - R_INN

- If you want to changing input range (AINR span), you can force reference voltages. AIN span $=-$ REF $\sim+$ REF
REF $=$ REFTOP - REFBOT

PHANTOM CELL INFORMATION

- Pins of the core can be assigned externally (Package pins) or internally (internal ports) depending on design methods.
The term "External" implies that the pins should be assigned externally like power pins.
The term "External/internal" implies that the applications of these pins depend on the user.

FEEDBACK REQUEST

It should be quite helpful to our ADC core development if you specify your system requirements on ADC in the following characteristic checking table and fill out the additional questions.
We appreciate your interest in our products. Thank you very much.

Characteristic	Min	Typ	Max	Unit	Remarks
Analog Power Supply Voltage				V	
Digital Power Supply Voltage				V	
Bit Resolution				Bit	
Reference Input Voltage			V		
Analog Input Voltage			Vpp		
Operating Temperature			CSB		
Integral Non-linearity Error			CSB		
Differential Non-linearity Error			mV		
Bottom Offset Voltage Error			mV		
Top Offset Voltage Error			MSPS		
Maximum Conversion Rate			mA		
Dynamic Supply Current			mW		
Power Dissipation			dB		
Signal-to-noise Ratio			CLK		
Pipeline Delay					
Digital Output Format timing diagram)					

1. Between single input-output and differential input-output configurations, which one is suitable for your system and why?
2. Please comment on the internal/external pin configurations you want our ADC to have, if you have any reason to prefer some type of configuration.
3. Freely list those functions you want to be implemented in our ADC, if you have any.

HISTORY CARD

Version	Date	Modified Items	Comments
ver 1.0	99.12	Original version published (preliminary)	
ver 1.1	02.4 .17	Phantom information added and the format changed	

